

Company Origin & History

Origin of Rothwell

Rothwell Water was cofounded in December 2012 by Peter L. Timpany, CSBR inventor, and Mr. Keonho Lee, with the goal of conducting a global water business based on CSBR process engineering experience applied to more than 30 wastewater/sewage treatment plants worldwide.

The Anyang Bakdal Underground Sewage Treatment Plant, implemented by Rothwell and which won the International Water Association's (IWA) No.1 Award for Resource Recovery has become a cornerstone event to successfully achieve Rothwell's goal of entering the global Water Market.

The Package CSBR Sewage Treatment System developed for Wastewater Treatment projects in Bolivia is an innovative eco-friendly technology that overcomes the Not In My Backyard (NIMBY) phenomenon, highlighting Rothwell's importance in the water business.

Our technology portfolio is applied to domestic and international markets, fulfilling our vision of being a global water company.

History

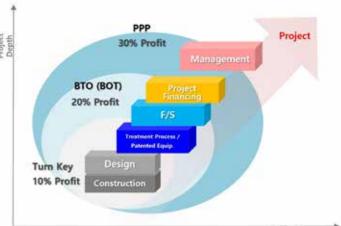
- 2012.12 Established Rothwell Watertech Glocal, Inc.
- 2014.03 Certification of Venture Company / R&D Institute
- 2014.12 Awarded 'Excellent Environment Venture Company' (Korea Environmental Industry & Technology Institute; KEITI)

 Registered patent for CMBR Processing System (Patent No. 10-1472421)
- 2015.04 Registered patent for Small Package CSBR Process System (Patent No. 10-
- 2015.11 Received 'The Citation of Excellent Small and Medium Business' (Minister of Industry and Commerce)
- 2016.08 Changed company name to Rothwell Water Co., Ltd.
- 2017.05 Registered patent for Advanced Treatment Process with Activated Sludge Purification System (Patent No. 10-1744451)
- 2017.12 Registered license for Engineering and Construction of Domestic Water Facilities

 Rothwell sets its business benchmark to global water companies like Veolia and SUEZ, and performs PPP (Public Private Partnership) business model based on water treatment process technology.

- Rothwell has global executives with broad experience in the water business. Our CEO has 35
 years of experience managing water projects; our CTO has 50 years of experience designing
 water treatment processes; and our COO has 28 years of experience in field work.
- Based on the design of water treatment process, we accomplish competent engineering services as business development, feasibility study, financing modeling, designing, manufacturing, construction, and commissioning/operation management.

Business Model



Core Treatment



Inricet Size

Bioreactor Composition RAS Tank Arroxic Anarcsbic Aerobic SBRV1 Decanter Decanter MAS Tank RAS Recycling Bioreactor Composition RAS Recycling Bioreactor Composition RAS Recycling RAS Recycling Bioreactor Composition RAS Recycling RAS Recycling Bioreactor Composition RAS Recycling RAS Recycling RAS Recycling

Major Features of CSBR

Stationary Disk Diffuser

ievable Type Diffuser

TRAS RAS (sludge cycle) concentration)

Two SBR Series nstant water level and continuous flow)

Hydraulic Decanter (air pressure from

Technology Introduction - CSBR

Competencies

CSBR™ is a water treatment process that achieves continuous flow by improving batch operation flow of conventional SBR (Sequencing Batch Reactor) process.

- ∘ A₂O activated sludge process with continuous process flow is arranged in the first stage.
- ∘ Two series of SBR system, maintaining a fixed water level, are arranged at the end of A₂O process.

Process Flow

- CFR (Continuos Flow Reactor) Cell is part of A₂O process that maintains continuous flow with anoxic, anaerobic and aerobic zone in the first stage, and two SBR reactors in a row alternatively in the second stage.
- The influent undergoes anaerobic/aerobic reaction from organic decomposition process and flows into the lower water level SBR tanks in which sedimentation and supernatant discharge occurs.
- The influent is mixed with sludge and undergoes SBR reaction with aerobic, anaerobic and sedimentation processes therefore biodegradation is once again performed.
- The microbial sludge is discharged to the outside through the thickened return activated sludge (TRAS) system on the bottom of SBR tank, where sedimentation occurs. The remaining sludge is mixed with the influent of the previous stage and the process is repeated in bioreactors.


Constant Level and Continuous Flow Sequencing Batch Reactor

Economic Value

	BNR	CSBR
Construction Cost	100%	70%
Operation Cost	100%	85%
Foot Print	100%	70%

^{*} BNR: Biological Nutrient Removal

Practical Case

Decanting Device

CSBR™ adapts a hydraulic decanter system using pressure of air blower achieving maintenance-free guarantee in whole life cycle of the plant.

The patent of continuous SBR system was granted to Aqua Aerobic in the United States in 1993 by Peter Timpany and co-inventor Mark Lansdell, as registered trademark MSBR™. (MSBR: Modified Sequencing Batch Reactor).


CSBR and MSBR

	Reactors	Patents	Removals	Technology Improvements	Reactor/Equipment Characteristics
CSBR	A ₂ O SBR Continuous	Peter L. Timpany (Rothwell Water)	Removal of Organics/ Nitrogen/ Phosphorus	Sludge circulation and scum removal> 5 Stage A ₂ O> MBR application	1. Deep(8m) front aeration system> High oxygen delivery efficiency 2. Performance guarantee for decanting device/aeration device only
MSBR	Flow	Mark Lansdell (Aqua Aerobic)	Removal of Organics / Phosphorus	Improved organic and phosphorus removal > 6 Stage A ₂ O> MBR application	Partial aeration & surface mixing Performance guarantee with collective delivery condition for pump /mixer/aerator/decanter etc.

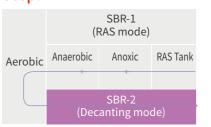
PKG CSBR

Rothwell's Package CSBR Processing System (PKG CSBR) has been developed as a part of the Bolivian Government's Wastewater Treatment project to solve the eutrophication problem of Lake Titicaca, the largest lake in South America, by applying CSBR's proven design techniques using Corrugated Steel Pipes. The success of PKG CSBR technology has been proven by an outstanding operation performance in Guri City's Pilot Plant in South Korea.

Types of corrugated steel pipes (Diffuser, Cone-piece/ half-moon

Reactor equip. installation (Diffuser/pump/pump/discharge device)

Package modularization (50m³/d, HxWxL = 4x4x8m)


(50m³/d, 100KWh/d) PKG CSBR Interior (BOD₅<10, TN<20, TP<1.0 mg/l)

Technology Introduction - CSBR

Reactor Operation Stage

SBR-1 (Decanting mode) Aerobic Anaerobic Anoxic RAS Tank SBR-2 (RAS mode)

Step.2

Aerobic/Settling Tank Operation Mode

Water Quality

	Influent	Treated Water Quality			
Parameter	(max/min)	BNR	CSBR		
BOD_5	270/100	15	≤10		
COD_cr	685/200	≤ 55	≤ 40		
TSS	287/100	≤ 15	≤ 15		
NH ₃ -N	20/15	≤ 2	≤ 2		
TKN	30/20	≤ 8	≤5		
PO ₄ -P	6.0/3.0	≤ 1.0	≤ 1.0		

PKG CSBR

Performance Characteristics

Performance	e Indicators	Unit	Influent	Effluent	
	BOD ₅	mg/l	60~300	10	
	COD_Cr	mg/l	150~700	40	
Water Quality	TSS	mg/l	80~300	10	
	T-N	mg/l	30~80	15	
	T-P	mg/l	5~20	1	
Daily Ca	apacity	m³/d	50~3,000		
Construct	tion Cost	won	50% of existing concrete structu		
Operation	on Cost	%	50%, compared to CAS		
Construction Period		month	6		
Scalability		%	200%		
+040 0 11 1	A 11 1 1 Cl 1				

*CAS: Conventional Activated Sludge

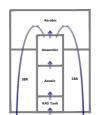
Technology Trends and Portfolio

PKG CSBR®

Small Scale WWTP

Guri, Titicaca Lake

- Cap.; 50~3,000m³/day
- BOD₅ 10mg/l
- COD_{cr} 40mg/l
- TSS 10mg/l
- T-N 20mg/l
- T-P 1mg/l



CSBR®

Medium, Large Scale WWTP

36 Plants in Operation

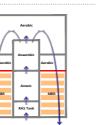
- Cap.; 5,000~1mil. m³/day - BOD₅ 10mg/l
- COD_{cr} 40mg/l
- TSS 10mg/l
- T-N 20mg/
- T-P 2mg/l

MCSBR®

Increased Capacity of CSBR WWTP

BJ in Korea

- Upgrade 130~150%
- BOD₅ 5mg/l
- COD_{cr} 40mg/l
- TSS 10mg/l
- T-N 15mg/
- T-P 1mg/l



CMBR®

Reclamation of CSBR WWTP

Anyang Bakdal

- CSBR® Upgrade 200%
- BOD₅ 3mg/l
- COD_{cr} 20mg/l
- TSS 0mg/l
- T-N 10mg/l - T-P 0.5mg/l

Vacuum Degassing

The Vacuum Degassing process was developed in 1990 and its treatment efficiency has been proven through on-site operations in Europe and Asia. Regardless of season, Vacuum Degassing enables effective advanced treatment for existing and new activated sludge treatment plants, with low construction cost, maximum processing capacity, and effluent quality stabilization.

Process Features

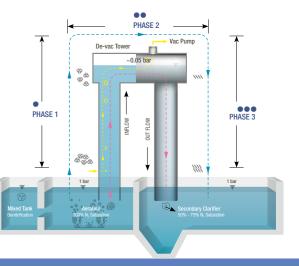
Efficiency

- Ensure continuous sludge settling efficiency throughout the year
- Consistent high return sludge concentration of up to 2%
- Maintain a high MLSS concentration of 6,000 to 8,000 mg/L

Economic Value

·Scum collection and treatment facilities are unnecessary in the second settling tank

Vacuum Degassing


Concentrated excess sludge discharge reduces dewatering

Stability Stability

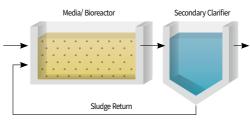
- No sludge floatation in the secondary clarifier
- Prevent overload and processing degradation during rain
- Stable processing performance and easy operation management
- Elimination of sludge bulking problems due to filamentous microorganism and prevention of potential Nocardia growth

energy and chemical consumption

- Reduced surface area of secondary settler by 30%
- Reduced reactor size by about 50% compared to existing BNR wastewater treatment plants

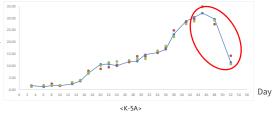
Bio Media(MBBR)

Bio Media (MBBR), which improves the water quality and treatment efficiency of existing wastewater treatment plants using Media, was developed in Norway in 1990 and has been applied to more than 200 sewage treatment plants around the world. Bio Media (MBBR) is semi-permanent, operates stably and can be applied wherever it is needed. Especially, it is very useful in improving treatment capacity of existing sewage treatment plants.

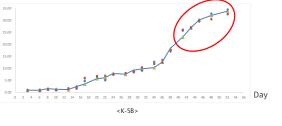

Process Features

Compactness

- Minimization of required site area since new construction/expansion is not necessary
- Improvement of treatment capacity of plant by adding media
- Low initial investment
- Possibility to utilize existing civil structures
- · Easy to increase processing capacity


Stability

- Stable operation at high loads
- High MLSS concentration ensures stability to external fluctuations
- Quick recovery after major upsets
- No sludge bulking in the secondary clarifier



Туре	Size (mm)	Density	Weight (g/ea)	Porosity (%)	Specific surface area (m²/m³)	Surface area (cm/ea)	Number of Media (ea/m³)	Material	Patents	Patent no.	Patent holder	
K-1	7×10	0.944	0.1690	69.3	668	6.68	1,000,000	PE	Kaldnes	expired	Veolia (for MBBR™)	
K-5A	25×3.5	0.951	0.3455	71.0	1,340	40.21	335,000	PE	Waterful	Waterful	Korea 30-0617651 (~2026)	Veolia
K-5B	25×3.5	0.953	0.3684	71.0	1,340	40.21	335,000	PE+Enzyme		USA: 8934 China; 1481786	Rothwell Water	

10

- 1. Suwon Phase-1 WWTP (220,000m³/d)
- 2. Kumi WWTP (330,000m³/d)
- 3. Kunjang Industrial WWTP (30,000 m³/d) 8. Byukje WWTP (30,000 m³/d)
- 4. Wonnung WWTP (80,000 m³/d)
- 5. Gaeun WWTP (2,000 m³/d)

- 6. Uijeongbu WWTP (200,000 m³/d)
- 7. Jeonju WWTP (100,000 m³/d)
- 9. Bakdal WWTP (250,000 m³/d)
- 10. Daegu Technopolice Industrial WWTP (4,500 m³/d)

- 11. Pyeongchang WWTP (18,000 m³/d)
- 12. Byeolrae WWTP (27,000 m³/d)
- 13. Minrak WWTP (16,000 m³/d)
- 14. Samsong WWTP (16,000 m³/d)
- 15. Sanming WWTP (80,000 m³/d)

- 16. Beijing Qinghe WWTP (120,000 m³/d)
- 17. Huai'an Municipal WWTP (20,000 m³/d)
- 18. Okotoks WWTP (3,000 m³/d)
- 19. Juangriego WWTP (10,000 m³/d)

Rothwell Main Technology References

ame of Project	Flow [m³/day]	Country	Status	Process
Bakdal WWTP (Underground)	250,000	South Korea	Commissioned 2017	CSBR
Nongso WWTP (Underground)	100,000	South Korea	Commissioned 2016	MSBR
Sosabeol WWTP (Underground)	22,000	South Korea	Commissioned 2015	MSBR
Daegu Techno Police Industrial WWTP (Underground)	4,500	South Korea	Commissioned 2014	CSBR
Samsong WWTP (Underground)	16,000	South Korea	Commissioned 2013	CSBR
Jumunjin WWTP	4,800	South Korea	Commissioning 2013	CSBR
Byeolrae WWTP (Underground)	27,000	South Korea	Commissioned 2013	CSBR
Minrak WWTP (Underground)	16,000	South Korea	Commissioned 2013	CSBR
Gulhwa WWTP (Underground)	47,000	South Korea	Commissioned 2012	MSBR
JinKun-II WWTP (Underground)	20,000	South Korea	Commissioned 2010	CSBR
Wonnung WWTP	80,000	South Korea	Commissioned 2008	CSBR
Byukje WWTP	30,000	South Korea	Commissioned 2007	CSBR
Kunjang Industrial Park WWTP	30,000	South Korea	Commissioned 2006	CSBR
Jeonju WWTP	100,000	South Korea	Commissioned 2005	CSBR
Yeosu WWTP	110,000	South Korea	Commissioned 2004	CSBR
Jinkun WWTP	80,000	South Korea	Commissioned 2004	CSBR
Gwangyang WWTP	24,000	South Korea	Commissioned 2002	MSBR
Incheon International Airport High Strength WWRP	20,000	South Korea	Commissioned 2000	MSBR
CAP CANA	110,000	Dominican Republic	In operation	MSBR
D'Clase Industrial/Zona Franca Gurabo WWTP	1,700	Dominican Republic	In operation	MSBR
Charoen Pokhand Poultry Processing WWTP	6,600	U.S.A	Commissioned 1998	MSBR
Marys Ville WWTP	40,000	U.S.A	In operation	MSBR
Cumana East WWTP	25,000	Venezuela	Commissioned 1999	MSBR
Juangriego WWTP	10,000	Venezuela	Commissioned 1990	MSBR
Mariposa WWTP	207,360	Venezuela	Commissioned 1999	MSBR
Punta Gorda WWTP	80,000	Venezuela	Commissioned 1996	MSBR
Huai'an Municipal WWTP	20,000	China	Commissioned 2007	CSBR
Jiaozhou Textile Industrial Park 100% WWTP	20,000	China	Commissioned 2006	CSBR
Sanming Municipal WWTP	80,000	China	Commissioned 2004	CSBR
Shenzhen Municipal WWTP	120,000	China	Commissioned 2001	MSBR
Songjiang East Municipal WWTP	30,000	China	Commissioned 2004	MSBR
Wuxi Municipal WWTP	30,000	China	Commissioned 2003	MSBR
Taiyuan Iron and Steel Industry. WWTP	50,000	China	In operation	MSBR
Kunming Puz haoWWTP	100,000	China	Commissioned 2015	MSBR
Estevan WWTP	6,000	Canada	Commissioned 1995	MSBR
Okotoks WWTP	3,000	Canada	Commissioned 1998	MSBR

Consulting	/ Feasibility	y Study	y References	
------------	---------------	---------	--------------	--

Name of Project	Capacity [m³/day]	Country	Year	Process	Remark
Pohang WWTP	25,000	South Korea	2003	Bio-SAC Media	
Gaeun WWTP	2,000	South Korea	2003	Queensland	
Kumi WWTP	330,000	South Korea	2005	DNR	BNR Upgrade
MNB Very High Strength Chemical Industrial WWTP	340	South Korea	2008	MBBR Media	
Uijeonbgu WWTP	200,000	South Korea	2009	MLE	BNR Upgrade
Suwon Phase-1 WWTP	220,000	South Korea	2009	TEC	BNR Upgrade

Feasibility Study / R&D

	Name of Project	Detail	Supporting Organization	Period
	Pioneering Support Project for Overseas Construction Market	8 waterworks projects in Central Java, Indonesia	ICAK	14.1.1~14.12.31
	Business Support Project for SMEs	Expansion of environmental market project using CSBR	KEITI	14.6.1 ~ 15.4.30
	Feasibility Study Support for Overseas Environmental Projects	Juliaca, Peru WWTP Project	KEITI	14.6.23 ~ 15.2.28
Feasibliity Study	Support Project for Industry Cooperation Development	Colombia Water Treatment Industry Development Cooperation	KIAT	14.7.1 ~ 14.12.31
	Support Project for Overseas Plant Feasibility Study	Puno, Peru WWTP Project	KOPIA	14.10.23 ~ 15.2.28
	Feasibility Study Support for Overseas Environmental Projects	Abancay, Peru WWTP Project	KEITI	15.4.15 ~ 15.12.31
	Pioneering Support Project for Overseas Construction Market	Small cities' WWTP near Titicaca Lake in Peru	ICAK	15.7.1 ~ 15.12.31
D0 D	New Product Project for Overseas Demand	PKG CSBR Sewage Treatment System with Ultrasonic waves (MOU with Ministry of Environment and Water, Bolivia)	TIPA	16.12.16 ~ 18.12.15
R&D	Development Project for Start-up Growth Technology	Development of biological advanced treatment CMSBR process with increased water quality and capacity	TIPA	17.10.30 ~ 18.10.29

/acuum	Degass	in σ(Bing	radex TM)
acuum	Degass	III B (DIOS	uuck /

500	lm^3	1	or	ah	OVE	

Name of Plant	Flow [m²/day]	Country	Year	Remark
Babiak	600	Poland	2007	BNR upgrade
Biskupiec Pomorski	980	Poland	2006	BNR upgrade
Cedry Wielkie	600	Poland	2006	BNR upgrade
Czestochowa	70,000	Poland	2010	Upgrade
Dzierzgon	2,300	Poland	1999	New facility
Gdansk	6,000	Poland	2009	New facility
Gdansk	6,000	Poland	2006	BNR upgrade
Gorzow	27,000	Poland	2007	BNR upgrade
Jawor	6,000	Poland	2005	BNR upgrade
Kaliska	500	Poland	2002	BNR upgrade
Lubochnia Dworska	1,000	Poland	2000	New facility
Luzino	850	Poland	2010	New facility
Luzino	650	Poland	1997	New facility

Name of Plant	Flow [m³/day]	Country	Year	Remark
Moszczenica	850	Poland	2010	New facility
Moszczenica	650	Poland	1997	New facility
Pieniezno	1,300	Poland	1997	New facility
Przodkowo	600	Poland	2001	BNR upgrade
Qinghe WWTP	120,000	China	2008	BNR Upgrade
Redzikowo	1,050	Poland	1997	BNR upgrade
Swarozyn	550	Poland	1995	New facility
Sztum	5,500	Poland	1995	New facility
Tartu	20,500	Estonia	2004	BNR upgrade
Turawa	4,000	Poland	1998	New facility
Witnica	1,400	Poland	2010	New facility
Witnica	1,400	Poland	2006	New facility
Witnica	1,000	Poland	1999	New facility
Zerkow	750	Poland	2007	BNR upgrade

Bio Media(Kaldnes media™)

Industrial		5,000m³ or above			
lame of Plant	Flow [m³/day]	Country	Yea		
AO Kondopoga	14,000	Russia	2000/200		
Arkhangelsk Pulp and Paper	17,400	Russia	200		
Bahia Sul	15,000	Brazil	200		
Bhadrachalam	6,400	India	200		
Billerud Gruvön Mill	6,000	Sweden	200		
CMPC Inforsa	6,000	Chile	200		
CMPC Laja	7,700	Chile	200		
CMPC Pacifico	5,500	Chile	200		
CMPC Puente Alto	5,500	Chile	200		
CMPC Santa Fe	9,000	Chile	200		
Fraser Papers, Maine	6,000	U.S.A	200		
Norske Skog Follum	8,000	Japan	200		
Papelera Sniace	10,690	Spain	201		
Quesnel River Pulp	6,000	Canada	200		
Rottneros Utansjö	7,350	Sweden	200		
SCA Graphic Ortviken	10,000	Sweden	200		
SCA Packaging Munksund	11,200	Sweden	200		
Stendal Mill	6,100	Germany	200		
Stora Enso Anjalankoski	8,000	Finland	200		

Municipal		2,000m³ or above	
Name of Plant	Flow [m³/day]	Country	Year
Broomfield, Colorado	4,697	U.S.A	2002
Corby STW	4,000	England	1998
EDAR Gavà-Viladecans	12,000	Spain	2010
EDAR Vilareal	4,908	Portugal	2010
Fields Point , RI	34,200	U.S.A	2010
Gardermoen	5,790	Norway	1998
Lille Marquette	14,630	France	2012
Lillehammer	3,840	Norway	1994
Nyköping	3,660	Sweden	1998
Pyewipe	3,960	England	1998
RA-2	19,000	Norway	2002
Röti	8,349	Switzerland	2004
Sjölunda	6,230	Sweden	1998
TEDA West (Phase 1)	4,200	China	2006
Trois Frontières CC3F	8,000	France	2008
Uddebo	2,700	Sweden	2008
Visby	5,800	Sweden	2007
Wildcat Hill, Flagstaff, AZ	6,600	U.S.A	2008
Yucaipa	4,037	U.S.A	2007

